专利摘要:
本發明提供一種銦鎵鋅氧化物(IGZO)奈米粉體,包括:一InGaZnO4晶體結構以及一微量元素,其中該InGaZnO4晶體結構係如下式所示:x(In2O3)-y(Ga2O3)-z(ZnO),其中,x:y:z=1:1:0.5-2,以及該微量元素包括硼(Boron)及/或鋁(Aluminum),含量介於約100-1000ppm。本發明亦提供一種銦鎵鋅氧化物(IGZO)奈米粉體的製備方法與其所製備之濺鍍用靶材。
公开号:TW201321305A
申请号:TW100142884
申请日:2011-11-23
公开日:2013-06-01
发明作者:Lik-Hang Chau;Yu-Hsien Chou;Chih-Chao Yang
申请人:Ind Tech Res Inst;
IPC主号:C04B35-00
专利说明:
銦鎵鋅氧化物(IGZO)奈米粉體及其製備方法與濺鍍用靶材
本發明係有關於一種銦鎵鋅氧化物(IGZO)奈米粉體、其製備方法、以及其所製備之濺鍍用靶材。
新興a-IGZO薄膜材料有機會取代目前a-Si或poly-Si作為薄膜晶體管(thin-film transistor,TFT)。此材料電子特性較a-Si佳,主要原因為:(1) In3+提供高電子移動速率;(2) Zn2+提供非晶結構穩定性;(3) Ga3+提供高載量電子密度,此材料可適用於現有平面顯示器(flat panel display,FPD)工業製程,亦可用於大面積基材。a-IGZO電子遷移率(大約為10 cm2/Vs,臨界電壓飄移幾乎一致)與可靠度比傳統氫化非晶矽(<1 cm2/Vs)薄膜電晶體高,具有穩定的非晶態結構、高電子載子密度、以及均勻性優於低溫多(複)晶矽薄膜電、晶體且可在室溫下製程等特性,因此a-IGZO薄膜電晶體具有取代氫化非晶矽薄膜電晶體與低溫多(複)晶矽薄膜電晶體來製作主動矩陣有機發光顯示器(Active Matrix Organic Light Emitting Display: AMOLED)的潛力。
現今薄膜晶體管(thin-film transistor,TFT)工業界一般均以射頻/直流電(RF/DC)濺鍍系統製備a-IGZO薄膜材料,這是因為濺鍍法具有品質佳、成本低廉、可大量生產且低污染等因素。
IGZO靶材品質與RF/DC濺鍍系統濺鍍出之IGZO薄膜電性與物理性質有關,主要影響濺鍍透明導電薄膜品質的因素除了薄膜沉積的參數外,不外乎跟靶材的相對密度、導電性、晶粒大小、微結構與純度亦有很大密切關係。透明導電膜如摻雜鎵之氧化鋅(Ga-doped ZnO,GZO)等與鈀材之密度有直接影響。靶材密度低,表面具有很多空洞,容易在靶材表面形成凸起物(nodules),做成靶材表面電場分布不均,極易在表面產生較強之電場,Ar或其他氣體離子撞擊靶材局部能量太高,容易將氧原子撞擊游離,形成高電阻之區域,在鍍膜過程中一些粒子會從這些凸起物(nodules)跑到薄膜,造成降低鍍膜品質。這些粒子在鍍膜室中亦造成電場分布不均(electrical discharge),因此影響鍍膜製程穩定度,降低產能。而未來大面積鍍膜製程更需求提高製程穩定度。在鍍膜生產製程中必須定期去除靶材表面之凸起物(nodules),降低鍍膜產能。
目前商業市售之IGZO濺鍍靶材主要以物理方式固態反應法製作。做法是將In2O3,ZnO和Ga2O3三種粉體(平均粒徑微米等級)直接機械研磨,再加上造粒研磨、加壓成形、高溫燒結(1200-1500℃)等步驟,製成濺鍍用靶材,此固態反應法雖然製程簡單,但其機械混和的均勻程度有所限制,當球磨過程中摻雜的金屬氧化物分佈不均勻,或是球磨完後被磨碎的金屬氧化物比表面積不夠大時,靶材在燒結過程中ZnGa2O4尖晶石(spinel)析出相就容易產生,會造成靶材中凸起物(nodules)增加,進而影響鍍膜製程穩定度影響RF/DC濺鍍IGZO薄膜之品質,另外,混合粒子亦較大(0.6-1.0 μm),壓製靶材時容易造成不均,降低靶材密度,影響濺鍍效果。固態反應法雖可大量製備IGZO鈀材,但因以物理方式製作之In2O3,ZnO和Ga2O3粉體直接機械研磨,以摻雜(doping)適當之Ga或In入ZnO晶體結構中以取代Zn原子來控制或降低電阻值,可能造成Ga摻雜不均,亦是IGZO導電材料內之各元素之均勻分佈成為降低電阻值的主要問題點,從而影響RF/DC濺鍍IGZO薄膜之品質。
有鑑於此,業界亟需一種能夠改善目前粉體混合固態反應法製成濺鍍用靶材之元素不均、摻雜量提升問題之濺鍍用靶材的製備方法,其奈米粉體可降低靶材燒結溫度,減少耗能,有助節能減碳效果。
本發明提供一種銦鎵鋅氧化物(IGZO)奈米粉體,包括:一InGaZnO4晶體結構以及一微量元素,其中該InGaZnO4晶體結構係如式(I)所示:
x(In2O3)-y(Ga2O3)-z(ZnO) (I)
其中,x:y:z=1:1:0.5-2,以及該微量元素包括硼(Boron)及/或鋁(Aluminum),含量介於約100-1000ppm。
本發明更提供一種濺鍍用靶材,係由上述之銦鎵鋅氧化物(IGZO)奈米粉體,經均壓成形及燒結處理而得。
本發明尚提供一種銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,包括:將一銦金屬化合物、一鎵金屬化合物、及一鋅金屬化合物溶於一溶劑中,其中該銦金屬化合物、該鎵金屬化合物、及該鋅金屬化合物中銦:鎵:鋅的莫耳比為2:2:1~1:1:1;加入一微量元素及一沉澱劑以產生一沉澱物,其中該微量元素包括硼(Boron)及/或鋁(Aluminum),含量介於約100-1000ppm;以及以700-1400℃燒結該沉澱物以形成一含銦鎵鋅氧化物奈米粉體。
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:
以下係藉由特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之優點及功效。本發明亦可藉由其它不同之實施方式加以施行或應用,本說明書中的各項細節亦可基於不同觀點與應用,在不悖離本發明所揭示之精神下賦予不同之修飾與變更。
本發明主要是以三種鹽類為起始原料,在溶劑中溶解來製備成均勻混合之溶液;然後,加入適當的沉澱劑後,在溶液中生成複鹽、氫氧化物、固溶體、複氧化物等之前驅沉澱物;最後,將所得之沉澱物經過水洗及過濾的程序,最後再經過乾燥、熱分解或脫水來製得所需之結晶性銦鎵鋅氧化物(IGZO)奈米粉體。
根據本發明之實施例所提供之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,首先將一銦金屬化合物、一鎵金屬化合物、及一鋅金屬化合物溶於一溶劑中,其中銦:鎵:鋅的莫耳比為2:2:1~1:1:1,較佳為1:1:1。上述銦金屬化合物可包括但不限於:硝酸銦、硫酸銦、亞硫酸銦、磷酸銦、次磷酸銦,上述鎵金屬化合物可包括但不限於:硝酸鎵、硝酸鎵、硫酸鎵、亞硫酸鎵、磷酸鎵、次磷酸鎵,以及上述鋅金屬化合物可包括但不限於:硝酸鋅、硫酸鋅、亞硫酸鋅、磷酸鋅、次磷酸鋅,形成含有銦、鎵、鋅等金屬離子的溶液後;接著加入一微量元素及一沉澱劑以產生一沉澱物,其中上述微量元素包括,例如:硼(Boron)及/或鋁(Aluminum),其中硼(Boron)及/或鋁(Aluminum)的含量各自介於約100-1000ppm,較佳介於約200-800 ppm,更佳介於約300-500 ppm,以及上述沉澱劑可包括但不限於氨水、碳酸鈉、氫氧化鈉、氫氧化鉀或上述之組合,且上述沉澱劑與鋅的莫耳比介於約3-8,較佳約5;然後清洗並分離上述沉澱物,之後再以700-1400℃,較佳800-1200℃燒結上述沉澱物3-8小時,較佳5小時,以形成一含銦鎵鋅氧化物奈米粉體,所得之銦鎵鋅氧化物(IGZO)奈米粉體,其純度大於約99%,較佳大於約99.5%。
與傳統的固相反應法相比,共沉澱法存在的雜質較少,因而獲得的粉末具有較高的化學均勻性,其主要特色為設備成本低廉、程序簡易、大量生產。本發明於合成IGZO奈米粉體組成上添加B、Al等元素來細化靶材晶粒及抑制雜相之生成,與現有IGZO之組成有所差異。
在本發明的實施例中,上述方法所得之銦鎵鋅氧化物(IGZO)奈米粉體,包括:一InGaZnO4晶體結構以及一微量元素,其中上述InGaZnO4晶體結構係如式(I)所示:
x(In2O3)-y(Ga2O3)-z(ZnO) (I)
其中,x:y:z=1:1:0.5-2,以及上述微量元素包括硼(Boron)及/或鋁(Aluminum),其中硼(Boron)及/或鋁(Aluminum)的含量各自介於約100-1000ppm,較佳介於約200-800 ppm,更佳介於約300-500 ppm。在一實施例中,上述銦鎵鋅氧化物(IGZO)奈米粉體,其純度可大於約99%,較佳大於約99.5%。依照本發明所製得之銦鎵鋅氧化物(IGZO)奈米粉體可為一單相之InGaZnO4晶體結構,且其中不含ZnGa2O4尖晶石(spinel)相。上述銦鎵鋅氧化物(IGZO)奈米粉體的平均粒徑約小於100 nm,較佳小於約80 nm,更佳小於約50 nm,且徑長比(l/d aspect ratio)可約等於1~2,其中徑長比(l/d aspect ratio)為單顆奈米粉體的直徑(d)與長度(1)的比值。
將本發明之銦鎵鋅氧化物(IGZO)奈米粉體與聚乙烯醇(polyvinyl acetate,PVA,商品)和去離子水混合成水溶液,PVA含量為0.1~0.3 wt%(100cc水溶液),PVA最佳含量為0.15~0.25 wt%(100cc水溶液),IGZO粉體含量10~25 wt%,IGZO粉體最佳含量15~20 wt%,混合後之IGZO水溶液先經過噴霧造粒,製作出粒徑大於5~20μm的IGZO球形粒子,接著把IGZO球形粒子經萬能試驗機加壓成形,下壓速率為0.3~2mm/min,成形壓力5~30MPa,最佳下壓速率為0.5~1.3mm/min,最佳成形壓力為15~25MPa,成形完後的生胚再經冷均壓處理,冷均壓施壓壓力為150~400MPa,最佳施壓壓力為250~350MPa,最後將緻密化之生胚置入高溫燒結爐進行燒結,其燒結條件如下:室溫升溫至300℃,升溫速率為0.5~3℃/min,最佳升溫速率為0.8~2.5℃/min;300℃持溫去除聚乙烯醇(polyvinyl acetate,PVA),持溫時間為1~5小時,最佳持溫時間為1.5~4小時;300℃升溫至燒結溫度,升溫速率0.5~3℃/min,燒結溫度為1200~1600℃,最佳升溫速率0.8~2℃/min,最佳燒結溫度為1350~1550℃;上述靶材燒結時間持溫2~8小時,最佳燒結時間4~6小時;接著自然爐冷,最後可得濺鍍用靶材。
綜上所述,本發明係以前趨物共沉降法(co-precipitation)方式製作的IGZO奈米粉體,目的係製備粒徑小而均一化之高結晶度及純度之IGZO奈米粉體,以應用於製備高品質IGZO靶材。依據本發明之方法所製備的IGZO奈米粉體乃直接合成,不需長時間機械研磨,可使In、Ga、Zn等元素更均勻分佈於奈米粉體中,提升靶材緻密度與均勻度,並且由於奈米粉體粒徑較小,可降低燒結溫度(700-900℃),如此一來不僅符合節省能源的需求,還有製程簡單、快速以及純度高等優點。
以下係藉由特定之具體實施例進一步說明本發明之特點與功效,但非用於限制本發明之範疇。
【實施例1】
本實施例係藉由以下方法量測奈米粉體之物性。
奈米粉體之結晶構造
使用X線繞射裝置(Philips公司製造,型號PW-1700)。
奈米粉體之粒徑
使用電子顯微鏡影像分析裝置(JEOL公司製造,型號5400)。
奈米粉體之組成
使用X光能量散佈分析儀(JEOL公司製造,型號5400)。
首先,取22 g銦金屬化合物(硝酸銦)、15 g鎵金屬化合物(硝酸鎵)、17 g鋅金屬化合物(硝酸鋅)、以及1 ml的微量元素(1000μg/ml B in H2O)溶於480 ml純水中,攪拌0.5小時,再加入30 g沉澱劑(碳酸鈉),在室温下攪拌2小時,再以去離子水清洗三次並分離沉產生之白色沉澱物。要著,置於110℃烘乾可得到白色粉體,然後再分別以800℃高温燒結3小時成含銦鎵鋅金屬氧化物。第1圖係根據本發明之實施例,顯示IGZO奈米粉體之X線繞射圖,經由X線繞射可確認奈米粉體中存在InGaZnO4之結晶。第2圖係根據本發明之實施例,顯示IGZO奈米粉體之電子顯微鏡影像圖,比例尺為100 nm,經由電子顯微鏡影像分析奈米粉體之粒徑約50 nm。經由X光能量散佈及組成分析儀可確認奈米粉體中之銦鎵鋅氧化物係(In2O3)-(Ga2O3)-2(ZnO),所得之IGZO奈米粉體之組成分析結果如表1所示。
【實施例2】
先將實施例1中所得之銦鎵鋅氧化物(IGZO)奈米粉體與聚乙烯醇(polyvinyl acetate,PVA,商品)和去離子水混合成水溶液,PVA含量為0.2 wt%(100cc水溶液),IGZO粉體含量20 wt%,混合後之IGZO水溶液先經過噴霧造粒,製作出粒徑5~12μm的IGZO球形粒子,再把噴霧造粒後的的粉體置入內徑為4吋的模具中,以萬能試驗機進行4吋生胚壓製,其生胚製作條件為施加壓力:25 MPa,持壓時間:1分鐘;成形後之生胚再經冷均壓處理,以300MPa施壓壓力使生胚緻密化。
最後將緻密化之生胚置入高溫燒結爐進行燒結,其燒結條件如下:室溫升溫至300℃,升溫速率為1.5℃/min;300℃持溫去除PVA,持溫時間為2小時;300℃升溫至燒結溫度,升溫速率率1℃/min,燒結溫度為1500℃;靶材燒結時間持溫4小時;最後自然爐冷。最後燒結完後靶材以研磨機將靶材表面研磨平整再經線切割加工處理即可得到一3吋靶材。靶材緻密度>99%,純度>99.9%。
【實施例3】
先將實施例1中所得之銦鎵鋅氧化物(IGZO)奈米粉體與聚乙烯醇(polyvinyl acetate,PVA,商品)和去離子水混合成水溶液,PVA含量為0.2 wt%(100cc水溶液),IGZO粉體含量20 wt%,混合後之IGZO水溶液先經過噴霧造粒,製作出粒徑5~12μm的IGZO球形粒子,再把噴霧造粒後的粉體置入內徑為4吋的模具中,以萬能試驗機進行4吋生胚壓製,其生胚製作條件為施加壓力:25 MPa,持壓時間:1分鐘;成形後之生胚再經冷均壓處理,以250MPa施壓壓力使生胚緻密化。
最後將緻密化之生胚置入高溫燒結爐進行燒結,其燒結條件如下:室溫升溫至300℃,升溫速率為1℃/min;300℃持溫去除PVA,持溫時間為2小時;300℃升溫至燒結溫度,升溫速率率1℃/min,燒結溫度為1400℃;靶材燒結時間持溫5小時;最後自然爐冷。最後燒結完後靶材經以研磨機將靶材表面研磨平整再經線切割加工即可得到一3吋靶材。靶材緻密度>99%,純度>99.9%。
雖然本發明已經以數個較佳實施例揭露如上,然其並非用以限定本發明。任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第1圖係根據本發明之實施例,顯示IGZO奈米粉體之X線繞射圖。
第2圖係根據本發明之實施例,顯示IGZO奈米粉體之電子顯微鏡影像圖。
权利要求:
Claims (15)
[1] 一種銦鎵鋅氧化物(IGZO)奈米粉體,包括:一InGaZnO4晶體結構以及一微量元素,其中該InGaZnO4晶體結構係如式(I)所示:x(In2O3)-y(Ga2O3)-z(ZnO) (I)其中,x:y:z=1:1:0.5-2,以及該微量元素包括硼(Boron)及/或鋁(Aluminum),含量介於約100-1000ppm。
[2] 如申請專利範圍第1項所述之銦鎵鋅氧化物(IGZO)奈米粉體,其純度大於約99%。
[3] 如申請專利範圍第1項所述之銦鎵鋅氧化物(IGZO)奈米粉體,其為一單相之InGaZnO4晶體結構。
[4] 如申請專利範圍第1項所述之銦鎵鋅氧化物(IGZO)奈米粉體,其中不含ZnGa2O4尖晶石(spinel)相。
[5] 如申請專利範圍第1項所述之銦鎵鋅氧化物(IGZO)奈米粉體的平均粒徑約小於100 nm,徑長比(l/d aspect ratio)約等於1。
[6] 一種濺鍍用靶材,係由申請專利範圍第1至5項中任一項所述之銦鎵鋅氧化物(IGZO)奈米粉體,經均壓成形及燒結處理而得。
[7] 一種銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,包括:將一銦金屬化合物、一鎵金屬化合物、及一鋅金屬化合物溶於一溶劑中,其中該銦金屬化合物、該鎵金屬化合物、及該鋅金屬化合物中銦:鎵:鋅的莫耳比為2:2:1~1:1:1;加入一微量元素及一沉澱劑以產生一沉澱物,其中該微量元素包括硼(Boron)及/或鋁(Aluminum),含量介於約100-1000ppm;以及以700-1400℃燒結該沉澱物以形成一含銦鎵鋅氧化物奈米粉體。
[8] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中在燒結該沉澱物之前更包括清洗並分離該沉澱物。
[9] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中該銦金屬化合物包括硝酸銦、硫酸銦、亞硫酸銦、磷酸銦、次磷酸銦,該鎵金屬化合物包括硝酸鎵、硫酸鎵、亞硫酸鎵、磷酸鎵、次磷酸鎵,以及該鋅金屬化合物包括硝酸鋅、硫酸鋅、亞硫酸鋅、磷酸鋅、次磷酸鋅、或上述之混合。
[10] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中該沉澱劑包括氨水、氫氧化鈉、氫氧化鉀或上述之組合。
[11] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中該高温燒結溫度介於約800-1200℃。
[12] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中該含銦鎵鋅氧化物(IGZO)奈米粉體,其純度大於約99%。
[13] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中該含銦鎵鋅氧化物(IGZO)奈米粉體為一單相之InGaZnO4晶體結構。
[14] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中該含銦鎵鋅氧化物(IGZO)奈米粉體不含ZnGa2O4尖晶石(spinel)相。
[15] 如申請專利範圍第7項所述之銦鎵鋅氧化物(IGZO)奈米粉體的製備方法,其中該含銦鎵鋅氧化物(IGZO)奈米粉體的平均粒徑約小於100 nm,徑長比(l/d aspect ratio)約等於1。
类似技术:
公开号 | 公开日 | 专利标题
TWI447073B|2014-08-01|銦鎵鋅氧化物(igzo)奈米粉體及其製備方法與濺鍍用靶材
TWI400346B|2013-07-01|Sputtering target, transparent conductive film and touch panel with transparent electrode
JP5269501B2|2013-08-21|酸化物焼結体及びそれからなるスパッタリングターゲット
JP2010045263A|2010-02-25|酸化物半導体、スパッタリングターゲット、及び薄膜トランジスタ
CN103201232B|2014-12-03|氧化物烧结体及溅射靶
Ilican et al.2011|The role of pH and boron doping on the characteristics of sol gel derived ZnO films
CN101845614B|2011-09-21|一种氧化锌基溅射靶材的制备方法
CN101844917A|2010-09-29|一种掺杂氧化锌纳米粉体的制备方法
KR20090092165A|2009-08-31|산화인듐아연계 스퍼터링 타겟 및 그 제조 방법
CN103193262A|2013-07-10|一种铟镓锌氧化物粉体及其陶瓷靶材的制备方法
TWI542721B|2016-07-21|氧化亞錫薄膜的製備方法
Choi et al.2013|Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display
JP2013001590A|2013-01-07|導電性酸化物およびその製造方法、ならびに酸化物半導体膜
TW201605761A|2016-02-16|氧化物燒結體、濺鍍用靶及使用其而得之氧化物半導體薄膜
JP5377328B2|2013-12-25|酸化スズ−酸化マグネシウム系スパッタリングターゲット及び透明半導体膜
CN104704138A|2015-06-10|溅射靶、氧化物半导体薄膜及它们的制造方法
US9670578B2|2017-06-06|Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
US9688580B2|2017-06-27|Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
Hong et al.2020|The preparation of high-density aluminum-doped zinc oxide ceramics by cold sintering process
US20160348229A1|2016-12-01|Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
TWI619818B|2018-04-01|濺鍍靶以及其製造方法
JP5818625B2|2015-11-18|アモルファスおよび微晶質部分を有するスパッタリングターゲット
KR101056948B1|2011-08-16|알루미늄을 포함하는 비정질 산화물막용 금속산화물 타겟 및 그 제조방법
JP2012162432A|2012-08-30|酸化ガリウム粉末及びその製造方法並びに酸化物焼結体スパッタリングターゲット及びその製造方法
Hu et al.2012|Effect of nickel doping on structural, morphological and optical properties of sol–gel spin coated ZnO films
同族专利:
公开号 | 公开日
US20130126344A1|2013-05-23|
CN103130493A|2013-06-05|
CN103130493B|2014-10-08|
TWI447073B|2014-08-01|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPH07196319A|1993-12-28|1995-08-01|Mitsubishi Materials Corp|高密度In−Sn酸化物粉末の製造方法|
US6606333B2|1998-07-10|2003-08-12|Murata Manufacturing Co., Ltd.|Semiconductor photonic device|
EP1431414A1|2001-09-27|2004-06-23|Idemitsu Kosan Co., Ltd.|Sputtering target and transparent electroconductive film|
JP5237558B2|2007-01-05|2013-07-17|出光興産株式会社|スパッタリングターゲット及び酸化物半導体膜|
JP5202630B2|2008-06-10|2013-06-05|Jx日鉱日石金属株式会社|スパッタリング用酸化物焼結体ターゲット及びその製造方法|
KR101267164B1|2009-06-05|2013-05-24|제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤|산화물 소결체, 그 제조 방법 및 산화물 소결체 제조용 원료 분말|
TWI415794B|2009-10-23|2013-11-21|Nat Univ Tsing Hua|合成銦鎵鋅氧化物之方法及使用其形成銦鎵鋅氧化物薄膜之方法|
CN101905971B|2010-07-23|2013-03-13|中国科学院上海硅酸盐研究所|稀土离子掺杂钇铝石榴石激光陶瓷的制备方法|JP2010153802A|2008-11-20|2010-07-08|Semiconductor Energy Lab Co Ltd|半導体装置及び半導体装置の作製方法|
CN103819178B|2013-12-11|2015-07-29|广西晶联光电材料有限责任公司|一种igzo靶材的制备方法|
EP3056471A1|2015-02-13|2016-08-17|Basf Se|Process for producing indium-, gallium-, metal- and oxygen-containing particles|
CN105420808B|2015-11-06|2018-09-18|昆山龙腾光电有限公司|In、Ga共掺杂的ZnO纳米晶的合成方法|
CN106082328B|2016-06-22|2017-10-20|西安工业大学|一种铁掺杂砷酸镓压电材料及其制备方法|
TWI720097B|2016-07-11|2021-03-01|日商半導體能源硏究所股份有限公司|濺射靶材及濺射靶材的製造方法|
TW202129966A|2016-10-21|2021-08-01|日商半導體能源研究所股份有限公司|複合氧化物及電晶體|
CN107055592B|2017-05-05|2018-04-10|华中科技大学|一种铟镓锌氧化物粉体的制备方法|
CN111574217A|2020-05-20|2020-08-25|先导薄膜材料(广东)有限公司|一种稀土掺杂铟镓锌氧化物粉体及其制备方法、应用|
CN112479683A|2020-12-17|2021-03-12|中山智隆新材料科技有限公司|一种掺杂的igzo材料的制备方法|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
TW100142884A|TWI447073B|2011-11-23|2011-11-23|銦鎵鋅氧化物(igzo)奈米粉體及其製備方法與濺鍍用靶材|TW100142884A| TWI447073B|2011-11-23|2011-11-23|銦鎵鋅氧化物(igzo)奈米粉體及其製備方法與濺鍍用靶材|
CN201110455651.6A| CN103130493B|2011-11-23|2011-12-27|铟镓锌氧化物纳米粉体及其制备方法与应用|
US13/411,215| US20130126344A1|2011-11-23|2012-03-02|Igzo nanoparticle and manufacturing method and use thereof|
[返回顶部]